Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.500
Filtrar
1.
Sci Rep ; 14(1): 8101, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582868

RESUMEN

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Asunto(s)
Cartílago Articular , MicroARNs , Osteoartritis , Ratas , Masculino , Animales , Proteínas Hedgehog , MicroARNs/genética , MicroARNs/uso terapéutico , Ratas Sprague-Dawley , Metaloproteinasa 13 de la Matriz/genética , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Condrocitos , Inyecciones Intraarticulares , Inflamación , Modelos Animales de Enfermedad
2.
Eur Rev Med Pharmacol Sci ; 28(7): 2670-2676, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639506

RESUMEN

BACKGROUND: Synovial chondromatosis is a non-malignant synovial disorder characterized by the presence of cartilage formation within the synovial membrane, leading to the emergence of multiple cartilaginous nodules that may be either attached or unattached. The presence of this anatomical feature is frequently observed in articulations such as the knee, hip, elbow, and ankle. CASE REPORT: In this study, we present a case of synovial chondromatosis in the knee joint of a healthy male in his early 60s. Notably, the patient exhibited the simultaneous presence of 87 large loose bodies. The occurrence of a substantial quantity of unattached entities of notable dimensions within the joint is highly uncommon. CONCLUSIONS: The patient had several synovial chondromas, a rare disease. Synovial chondromatosis is a benign disorder; however, growing synovium can cause pyogenic cartilage nodules. Most loose bodies in joints can abrade and degenerate articular cartilage, causing long-term discomfort. Thus, an early-stage procedure to remove loose bodies and carefully excise synovial tissue is necessary to treat this condition.


Asunto(s)
Cartílago Articular , Condromatosis Sinovial , Humanos , Masculino , Condromatosis Sinovial/diagnóstico por imagen , Condromatosis Sinovial/cirugía , Condromatosis Sinovial/patología , Membrana Sinovial/patología , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/patología , Cartílago Articular/patología , Articulación del Tobillo
3.
Sci Adv ; 10(16): eadk8402, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640238

RESUMEN

Osteoarthritis (OA) treatment is limited by the lack of effective nonsurgical interventions to slow disease progression. Here, we examined the contributions of the subchondral bone properties to OA development. We used parathyroid hormone (PTH) to modulate bone mass before OA initiation and alendronate (ALN) to inhibit bone remodeling during OA progression. We examined the spatiotemporal progression of joint damage by combining histopathological and transcriptomic analyses across joint tissues. The additive effect of PTH pretreatment before OA initiation and ALN treatment during OA progression most effectively attenuated load-induced OA pathology. Individually, PTH directly improved cartilage health and slowed the development of cartilage damage, whereas ALN primarily attenuated subchondral bone changes associated with OA progression. Joint damage reflected early transcriptomic changes. With both treatments, the structural changes were associated with early modulation of immunoregulation and immunoresponse pathways that may contribute to disease mechanisms. Overall, our results demonstrate the potential of subchondral bone-modifying therapies to slow the progression of OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Animales , Hormona Paratiroidea , Cartílago Articular/patología , Osteoartritis/tratamiento farmacológico , Osteoartritis/etiología , Osteoartritis/patología , Huesos , Alendronato/farmacología , Alendronato/uso terapéutico
4.
Sci Rep ; 14(1): 8046, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580748

RESUMEN

Osteoarthritis is a common chronic disease and major cause of disability and chronic pain in ageing populations. In this pathology, the entire joint is involved, and the regeneration of articular cartilage still remains one of the main challenges. Here, we investigated the molecular mechanisms underlying cartilage regeneration in young mice using a full-thickness cartilage injury (FTCI) model. FTCI-induced cartilage defects were created in the femoral trochlea of young and adult C57BL/6 mice. To identify key molecules and pathways involved in the early response to cartilage injury, we performed RNA sequencing (RNA-seq) analysis of cartilage RNA at 3 days after injury. Young mice showed superior cartilage regeneration compared to adult mice after cartilage injury. RNA-seq analysis revealed significant upregulation of genes associated with the immune response, particularly in the IFN-γ signaling pathway and qRT-PCR analysis showed macrophage polarization in the early phase of cartilage regeneration (3 days) in young mice after injury, which might promote the removal of damaged or necrotic cells and initiate cartilage regeneration in response to injury. IFN-γR1- and IFN-γ-deficient mice exhibited impaired cartilage regeneration following cartilage injury. DMM-induced and spontaneous OA phenotypes were exacerbated in IFN-γR1-/- mice than in wild-type mice. Our data support the hypothesis that IFN-γ signaling is necessary for cartilage regeneration, as well as for the amelioration of post-traumatic and age-induced OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Ratones , Cartílago Articular/patología , Modelos Animales de Enfermedad , Interferón gamma/genética , Ratones Endogámicos C57BL , Osteoartritis/metabolismo , Regeneración , Transducción de Señal
5.
Biofabrication ; 16(3)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38569492

RESUMEN

Tissue engineering has emerged as an advanced strategy to regenerate various tissues using different raw materials, and thus it is desired to develop more approaches to fabricate tissue engineering scaffolds to fit specific yet very useful raw materials such as biodegradable aliphatic polyester like poly (lactide-co-glycolide) (PLGA). Herein, a technique of 'wet 3D printing' was developed based on a pneumatic extrusion three-dimensional (3D) printer after we introduced a solidification bath into a 3D printing system to fabricate porous scaffolds. The room-temperature deposition modeling of polymeric solutions enabled by our wet 3D printing method is particularly meaningful for aliphatic polyester, which otherwise degrades at high temperature in classic fuse deposition modeling. As demonstration, we fabricated a bilayered porous scaffold consisted of PLGA and its mixture with hydroxyapatite for regeneration of articular cartilage and subchondral bone. Long-termin vitroandin vivodegradation tests of the scaffolds were carried out up to 36 weeks, which support the three-stage degradation process of the polyester porous scaffold and suggest faster degradationin vivothanin vitro. Animal experiments in a rabbit model of articular cartilage injury were conducted. The efficacy of the scaffolds in cartilage regeneration was verified through histological analysis, micro-computed tomography (CT) and biomechanical tests, and the influence of scaffold structures (bilayerversussingle layer) onin vivotissue regeneration was examined. This study has illustrated that the wet 3D printing is an alternative approach to biofabricate tissue engineering porous scaffolds based on biodegradable polymers.


Asunto(s)
Cartílago Articular , Animales , Conejos , Porosidad , Microtomografía por Rayos X , Temperatura , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Polímeros , Poliésteres , Impresión Tridimensional
6.
BMC Musculoskelet Disord ; 25(1): 253, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561728

RESUMEN

BACKGROUND: The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS: CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS: The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION: The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Animales , Ratones , Cartílago Articular/metabolismo , Antígeno CD146/metabolismo , Diferenciación Celular , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea/metabolismo , Condrogénesis , ARN Mensajero/metabolismo , Fenómenos Magnéticos , Lípidos
7.
Immun Inflamm Dis ; 12(4): e1211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602270

RESUMEN

BACKGROUND: Traumatic cartilage injury is an important cause of osteoarthritis (OA) and limb disability, and toll-like receptors (TLRs) mediated innate immune response has been confirmed to play a crucial role in cartilage injury. In the previous study, we found that the activation of TLR8 molecules in injured articular cartilage was more obvious than other TLRs by establishing an animal model of knee impact injury in rabbits, and the changes of TLR8 molecules could significantly affect the process of articular cartilage injury and repair. OBJECTIVE: To verify how mir-99a-5p regulates TLR8 receptor mediated innate immune response to treat traumatic cartilage injury. METHODS: The impact of a heavy object on the medial condyle of the rabbit's knee joint caused damage to the medial condylar cartilage. Through pathological and imaging analysis, it was demonstrated whether the establishment of an animal model of traumatic cartilage injury was successful. Establishing a cell model by virus transfection of chondrocytes to demonstrate the role of TLR8 in the innate immune response to impact cartilage injury. Through transcriptome sequencing, potential targets of TLR8, mir-99a-5p, were predicted, and basic experiments were conducted to demonstrate how they interact with innate immune responses to impact cartilage damage. RESULTS: TLR8 is a receptor protein of the immune system, which is widely expressed in immune cells. In our study, we found that TLR8 expression is localized in lysosomes and endosomes. Mir-99a-5p can negatively regulate TLR8 to activate PI3K-AKT molecular pathway and aggravate cartilage damage. Inhibiting TLR8 expression can effectively reduce the incidence of articular cartilage damage. CONCLUSION: Based on the results from this study, mir-99a-5p may be an effective molecular marker for predicting traumatic cartilage injury and targeting TLR8 is a novel and promising approach for the prevention or early treatment of cartilage damage.


Asunto(s)
Cartílago Articular , MicroARNs , Animales , Conejos , MicroARNs/genética , Receptor Toll-Like 8/metabolismo , Fosfatidilinositol 3-Quinasas , Articulación de la Rodilla/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/patología
8.
Nat Commun ; 15(1): 3225, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622181

RESUMEN

Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. Recent clinical trials of the nerve growth factor (NGF) inhibitors in OA patients have suggested adverse effects of NGF inhibition on joint structure. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression in mice. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study suggests a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratones , Animales , Receptor de Factor de Crecimiento Nervioso , FN-kappa B , Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso , Inflamación , Cartílago Articular/metabolismo , Articulaciones/metabolismo
9.
ACS Nano ; 18(16): 10667-10687, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38592060

RESUMEN

Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale. This review presents a comprehensive survey of recent research in nanomedicine for cartilage repair, with a primary focus on biomaterial design considerations and recent advances. The review commences with an introductory overview of the intricate cartilage microenvironment and further delves into key biomaterial design parameters crucial for treating cartilage damage, including microstructure, surface charge, and active targeting. The focal point of this review lies in recent advances in nano drug delivery systems and nanotechnology-enabled 3D matrices for cartilage repair. We discuss the compositions and properties of these nanomaterials and elucidate how these materials impact the regeneration of damaged cartilage. This review underscores the pivotal role of nanotechnology in improving the efficacy of biomaterials utilized for the treatment of cartilage damage.


Asunto(s)
Materiales Biocompatibles , Cartílago Articular , Nanomedicina , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanomedicina/métodos , Cartílago Articular/efectos de los fármacos , Animales , Sistemas de Liberación de Medicamentos , Ingeniería de Tejidos , Regeneración/efectos de los fármacos
10.
J Mech Behav Biomed Mater ; 154: 106534, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581961

RESUMEN

Articular cartilage exhibits site-specific tissue inhomogeneity, for which the tissue properties may continuously vary across the articular surface. To facilitate practical applications such as studying site-specific cartilage degeneration, the inhomogeneity may be approximated with several distinct region-wise variations, with one set of tissue properties for one region. A clustering method was previously developed to partition such regions using cartilage indentation-relaxation and thickness mapping instead of simply using surface geometry. In the present study, a quantitative parameter based on streaming potential measurement was introduced as an additional feature to assess the applicability of the methodology with independent datasets. Experimental data were collected from 24 sets of femoral condyles, extracted from fresh porcine stifle joints, through streaming potential mapping, automated indentation, and needle penetration tests. K-means clustering and Elbow method were used to find optimal region partitions. Consistent with previous findings, three regions were suggested for either lateral or medial condyle regardless of left or right joint. The region shapes were approximately triangular or trapezoidal, which was similar to what was found previously. Streaming potentials were confirmed to be region-dependent, but not significantly different among joints. The cartilage was significantly thicker in the medial than lateral condyles. The region areas were consistent among joints, and comparable to that found in a previous study. The present study demonstrated the capability of region partitioning methods with different variables, which may facilitate new applications whenever site-specific tissue properties must be considered.


Asunto(s)
Cartílago Articular , Animales , Porcinos , Articulación de la Rodilla , Fémur
11.
J Orthop Surg Res ; 19(1): 247, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632625

RESUMEN

OBJECTIVE: The study aims to evaluate the accuracy of an MRI-based artificial intelligence (AI) segmentation cartilage model by comparing it to the natural tibial plateau cartilage. METHODS: This study included 33 patients (41 knees) with severe knee osteoarthritis scheduled to undergo total knee arthroplasty (TKA). All patients had a thin-section MRI before TKA. Our study is mainly divided into two parts: (i) In order to evaluate the MRI-based AI segmentation cartilage model's 2D accuracy, the natural tibial plateau was used as gold standard. The MRI-based AI segmentation cartilage model and the natural tibial plateau were represented in binary visualization (black and white) simulated photographed images by the application of Simulation Photography Technology. Both simulated photographed images were compared to evaluate the 2D Dice similarity coefficients (DSC). (ii) In order to evaluate the MRI-based AI segmentation cartilage model's 3D accuracy. Hand-crafted cartilage model based on knee CT was established. We used these hand-crafted CT-based knee cartilage model as gold standard to evaluate 2D and 3D consistency of between the MRI-based AI segmentation cartilage model and hand-crafted CT-based cartilage model. 3D registration technology was used for both models. Correlations between the MRI-based AI knee cartilage model and CT-based knee cartilage model were also assessed with the Pearson correlation coefficient. RESULTS: The AI segmentation cartilage model produced reasonably high two-dimensional DSC. The average 2D DSC between MRI-based AI cartilage model and the tibial plateau cartilage is 0.83. The average 2D DSC between the AI segmentation cartilage model and the CT-based cartilage model is 0.82. As for 3D consistency, the average 3D DSC between MRI-based AI cartilage model and CT-based cartilage model is 0.52. However, the quantification of cartilage segmentation with the AI and CT-based models showed excellent correlation (r = 0.725; P values < 0.05). CONCLUSION: Our study demonstrated that our MRI-based AI cartilage model can reliably extract morphologic features such as cartilage shape and defect location of the tibial plateau cartilage. This approach could potentially benefit clinical practices such as diagnosing osteoarthritis. However, in terms of cartilage thickness and three-dimensional accuracy, MRI-based AI cartilage model underestimate the actual cartilage volume. The previous AI verification methods may not be completely accurate and should be verified with natural cartilage images. Combining multiple verification methods will improve the accuracy of the AI model.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Inteligencia Artificial , Cartílago Articular/anatomía & histología , Articulación de la Rodilla/anatomía & histología , Imagen por Resonancia Magnética/métodos
12.
Anim Biotechnol ; 35(1): 2337760, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38656923

RESUMEN

Although the knee joint (KNJ) and temporomandibular joint (TMJ) all belong to the synovial joint, there are many differences in developmental origin, joint structure and articular cartilage type. Studies of joint development in embryos have been performed, mainly using poultry and rodents. However, KNJ and TMJ in poultry and rodents differ from those in humans in several ways. Very little work has been done on the embryonic development of KNJ and TMJ in large mammals. Several studies have shown that pigs are ideal animals for embryonic development research. Embryonic day 30 (E30), E35, E45, E55, E75, E90, Postnatal day 0 (P0) and Postnatal day 30 (P30) embryos/fetuses from the pigs were used for this study. The results showed that KNJ develops earlier than TMJ. Only one mesenchymal condensate of KNJ is formed on E30, while two mesenchymal condensates of TMJ are present on E35. All structures of KNJ and TMJ were formed on E45. The growth plate of KNJ begins to develop on E45 and becomes more pronounced from E55 to P30. From E75 to E90, more and more vascular-rich cartilage canals form in the cartilage regions of both joints. The cartilaginous canal of the TMJ divides the condyle into sections along the longitudinal axis of the condyle. This arrangement of cartilaginous canal was not found in the KNJ. The chondrification of KNJ precedes that of TMJ. Ossification of the knee condyle occurs gradually from the middle to the periphery, while that of the TMJ occurs gradually from the base of the mandibular condyle. In the KNJ, the ossification of the articular condyle is evident from P0 to P30, and the growth plate is completely formed on P30. In the TMJ, the cartilage layer of condyle becomes thinner from P0 to P30. There is no growth plate formation in TMJ during its entire development. There is no growth plate formation in the TMJ throughout its development. The condyle may be the developmental center of the TMJ. The chondrocytes and hypertrophic chondrocytes of the growth plate are densely arranged. The condylar chondrocytes of TMJ are scattered, while the hypertrophic chondrocytes are arranged. Embryonic development of KNJ and TMJ in pigs is an important bridge for translating the results of rodent studies to medical applications.


Asunto(s)
Articulación de la Rodilla , Articulación Temporomandibular , Animales , Porcinos/embriología , Articulación Temporomandibular/embriología , Articulación Temporomandibular/crecimiento & desarrollo , Articulación de la Rodilla/embriología , Articulación de la Rodilla/crecimiento & desarrollo , Cartílago Articular/embriología , Cartílago Articular/crecimiento & desarrollo , Femenino , Desarrollo Embrionario/fisiología , Embrión de Mamíferos
13.
J Cell Mol Med ; 28(8): e18327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661437

RESUMEN

Cartilage defects in the knee are often associated with the progression of degenerative osteoarthritis (OA), and cartilage repair is a useful strategy for managing this disease. However, cartilage repair is challenging because of the unique environment within the tissue. Recently, stem cell-based therapies have shed new light on this issue. In this study, we prepared exosomes (EXOs) from cartilage stem/progenitor cells (CSPCs) and found that treatment with EXOs increased the viability, migration, and proliferation of cultured primary chondrocytes. In a subacute OA rat model, the application of EXOs facilitated cartilage regeneration as evidenced by histological staining. Exosomal protein analysis together with bioinformatics suggested that cyclin-dependent kinase 9 (CDK9) is a key factor for chondrocyte growth and migration. Functional studies confirmed this prediction, that is, inhibiting CDK9 reduced the beneficial effects induced by EXOs in primary chondrocytes; while overexpression of CDK9 recapitulated the EXOs-induced phenotypes. RNA-Seq data showed that a set of genes involved in cell growth and migration were up-regulated by EXOs in chondrocytes. These changes could be partially reproduced by CDK9 overexpression. Overall, our data suggest that EXOs derived from primary CSPCs hold great therapeutic potential for treating cartilage defect-associated disorders such as degenerative OA, and that CDK9 is a key factor in this process.


Asunto(s)
Cartílago Articular , Proliferación Celular , Condrocitos , Modelos Animales de Enfermedad , Exosomas , Animales , Exosomas/metabolismo , Ratas , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/patología , Células Madre/metabolismo , Células Madre/citología , Movimiento Celular , Ratas Sprague-Dawley , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/terapia , Masculino , Células Cultivadas , Regeneración , Osteoartritis/patología , Osteoartritis/metabolismo , Osteoartritis/terapia
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 273-278, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645844

RESUMEN

Osteochondral lesion of the talus (OLT) is a localized cartilage and subchondral bone injury of the talus trochlea. OLT is caused by trauma and other reasons, including osteochondritis dissecans of the talus (OCD) and talus osteochondral tangential fracture. OLT can develop from being asymptomatic to subchondral bone cysts accompanied by deep ankle pain. OLT tends to occur on the medial and lateral sides of the talar vault. OLT seriously affects the patients' life and work and may even lead to disability. Herein, we reviewed advances in the treatment of OLT and the strengths and weaknesses of various treatments. Different treatment methods, including conservative treatments and surgical treatments, can be adopted according to the different subtypes or clinical symptoms of OLT. Conservative treatments mostly relieve symptoms in the short term and only slow down the disease. In recent years, it has been discovered that platelet-rich plasma injection, microfracture, periosteal bone grafting, talar cartilage transplantation, allograft bone transplantation, reverse drilling under robotic navigation, and other methods can achieve considerable benefits when each of these treatment methods is applied. Furthermore, microfracture combined with platelet-rich plasma injections, microfracture combined with cartilage transplantation, and various other treatment methods combined with anterior talofibular ligament repair have all led to good treatment outcomes.


Asunto(s)
Trasplante Óseo , Astrágalo , Astrágalo/lesiones , Astrágalo/cirugía , Humanos , Trasplante Óseo/métodos , Plasma Rico en Plaquetas , Osteocondritis Disecante/terapia , Osteocondritis Disecante/cirugía , Cartílago/trasplante , Artroplastia Subcondral , Cartílago Articular/lesiones , Cartílago Articular/cirugía
15.
PLoS One ; 19(4): e0298575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593124

RESUMEN

Osteoarthritis (OA) is a widespread chronic, progressive, degenerative joint disease that causes pain and disability. Current treatments for OA have limited effectiveness and new biomarkers need to be identified. Bioinformatics analysis was conducted to explore differentially expressed genes and DNA repair/recombination protein 54 L (RAD54L) was selected. We firstly overexpressed RAD54L in interleukin-1ß (IL-1ß)-induced human articular chondrocytes or in OA rats to investigate its effect on OA. Chondrocyte viability and apoptotic rate were measured by Cell Counting Kit-8 and flow cytometry, respectively. Then we evaluated OA severity in vivo by Hematoxylin-eosin staining and Osteoarthritis Research Society International standards. The expression of inflammatory mediators was tested by enzyme-linked immunosorbent assay. Finally, western blot was performed to determine the relative expression level of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Overexpression of RAD54L promoted cell viability and attenuated apoptosis in IL-1ß-induced human chondrocytes. A lower Osteoarthritis Research Society International score and a remarkable alleviation of chondrocyte disordering and infiltration of inflammatory cells were found in cartilage tissues of OA rats after overexpressing RAD54L. The inflammatory response induced by OA was decreased by RAD54L overexpression in vitro and in vivo. In addition, RAD54L overexpression decreased the relative expression level of HIF-1α and VEGF. Overexpression of RAD54L could attenuate OA by suppressing the HIF-1α/VEGF signaling pathway, indicating that RAD54L may be a potential treatment target for OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Humanos , Ratas , Apoptosis , Cartílago Articular/metabolismo , Condrocitos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Interleucina-1beta/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Med Eng Phys ; 126: 104130, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621832

RESUMEN

Biphasic models have been widely used to simulate the time-dependent biomechanical response of soft tissues. Modelling techniques of joints with biphasic weight-bearing soft tissues have been markedly improved over the last decade, enhancing our understanding of the function, degenerative mechanism and outcomes of interventions of joints. This paper reviews the recent advances, challenges and opportunities in computational models of joints with biphasic weight-bearing soft tissues. The review begins with an introduction of the function and degeneration of joints from a biomechanical aspect. Different constitutive models of articular cartilage, in particular biphasic materials, are illustrated in the context of the study of contact mechanics in joints. Approaches, advances and major findings of biphasic models of the hip and knee are presented, followed by a discussion of the challenges awaiting to be addressed, including the convergence issue, high computational cost and inadequate validation. Finally, opportunities and clinical insights in the areas of subject-specific modeling and tissue engineering are provided and discussed.


Asunto(s)
Cartílago Articular , Modelos Biológicos , Humanos , Fenómenos Biomecánicos , Articulaciones/fisiología , Cartílago Articular/fisiología , Simulación por Computador , Articulación de la Rodilla/fisiología , Análisis de Elementos Finitos
17.
Int J Biol Sci ; 20(6): 1965-1977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617544

RESUMEN

Osteoarthritis (OA) is the most prevalent degenerative joint disorder, causing physical impairments among the elderly. Core binding factor subunit ß (Cbfß) has a critical role in bone homeostasis and cartilage development. However, the function and mechanism of Cbfß in articular cartilage and OA remains unclear. We found that Cbfßf/fAggrecan-CreERT mice with Cbfß-deficiency in articular cartilage developed a spontaneous osteoarthritis-like phenotype with articular cartilage degradation. Immunofluorescence staining showed that Cbfßf/fAggrecan-CreERT mice exhibited a significant increase in the expression of articular cartilage degradation markers and inflammatory markers in the knee joints. RNA-sequencing analysis demonstrated that Cbfß orchestrated Hippo/Yap, TGFß/Smad, and Wnt/ß-catenin signaling pathways in articular cartilage, and Cbfß deficiency resulted in the abnormal expression of downstream genes involved in maintaining articular cartilage homeostasis. Immunofluorescence staining results showed Cbfß deficiency significantly increased active ß-catenin and TCF4 expression while reducing Yap, TGFß1, and p-Smad 2/3 expression. Western blot and qPCR validated gene expression changes in hip articular cartilage of Cbfß-deficient mice. Our results demonstrate that deficiency of Cbfß in articular cartilage leads to an OA-like phenotype via affecting Hippo/Yap, TGFß, and Wnt/ß-catenin signaling pathways, disrupting articular cartilage homeostasis and leading to the pathological process of OA in mice. Our results indicate that targeting Cbfß may be a potential therapeutic target for the design of novel and effective treatments for OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Ratones , Agrecanos , beta Catenina/genética , Osteoartritis/genética , Fenotipo , Factor de Crecimiento Transformador beta , Vía de Señalización Wnt/genética
18.
J Cell Mol Med ; 28(7): e18242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509736

RESUMEN

Articular cartilage defect is challenged by insufficient regenerative ability of cartilage. Catalpol (CA), the primary active component of Rehmanniae Radix, could exert protective effects against various diseases. However, the impact of CA on the treatment of articular cartilage injuries is still unclear. In this study, full-thickness articular cartilage defect was induced in a mouse model via surgery. The animals were intraperitoneally injected with CA for 4 or 8 weeks. According to the results of macroscopic observation, micro-computed tomography CT (µCT), histological and immunohistochemistry staining, CA treatment could promote mouse cartilage repair, resulting in cartilage regeneration, bone structure improvement and matrix anabolism. Specifically, an increase in the expression of CD90, the marker of mesenchymal stem cells (MSCs), in the cartilage was observed. In addition, we evaluated the migratory and chondrogenic effects of CA on MSCs. Different concentration of CA was added to C3H10 T1/2 cells. The results showed that CA enhanced cell migration and chondrogenesis without affecting proliferation. Collectively, our findings indicate that CA may be effective for the treatment of cartilage defects via stimulation of endogenous MSCs.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Glucósidos Iridoides , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Ratones , Cartílago Articular/patología , Microtomografía por Rayos X , Diferenciación Celular , Enfermedades de los Cartílagos/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Condrogénesis
19.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519981

RESUMEN

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Humanos , Ratones , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/farmacología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Células Cultivadas , Condrocitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacología , Eicosanoides/uso terapéutico , Células Endoteliales/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/farmacología , Metaloproteinasa 3 de la Matriz/uso terapéutico , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Osteoartritis/metabolismo , ARN Interferente Pequeño/metabolismo
20.
J Orthop Surg Res ; 19(1): 197, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528611

RESUMEN

BACKGROUND: Patellofemoral osteoarthritis (PFJOA) is a subtype of knee OA, which is one of the main causes of anterior knee pain. The current study found an increased prevalence of OA in postmenopausal women, called postmenopausal OA. Therefore, we designed the ovariectomized rat model of patella baja-induced PFJOA. Alendronate (ALN) inhibits osteoclast-mediated bone loss, and has been reported the favorable result of a potential intervention option of OA treatment. However, the potential effects of ALN treatment on PFJOA in the ovariectomized rat model are unknown and need further investigation prior to exploration in the clinical research setting. In this study, the effects of ALN on articular cartilage degradation and subchondral bone microstructure were assessed in the ovariectomized PFJOA rat model for 10 weeks. METHODS: Patella baja and estrogen withdrawal were induced by patellar ligament shortening (PLS) and bilateral ovariectmomy surgeries in 3-month-old female Sprague-Dawley rats, respectively. Rats were randomly divided into five groups (n = 8): Sham + V; OVX + V, Sham + PLS + V, OVX + PLS + V, OVX + PLS + ALN (ALN: 70 µg/kg/week). Radiography was performed to evaluate patellar height ratios, and the progression of PFJOA was assessed by macroscopic and microscopic analyses, immunohistochemistry and micro-computed tomography (micro-CT). RESULTS: Our results found that the patella baja model prepared by PLS can successfully cause degeneration of articular cartilage and subchondral bone, resulting in changes of PFJOA. OVX caused a decrease in estrogen levels in rats, which aggravated the joint degeneration caused by PFJOA. Early application of ALN can delay the degenerative changes of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent, improve and maintain the micrometabolism and structural changes of cartilage and subchondral bone. CONCLUSION: The early application of ALN can delay the destruction of articular cartilage and subchondral bone microstructure in castrated PFJOA rat to a certain extent.


Asunto(s)
Resorción Ósea , Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Ratas , Femenino , Animales , Lactante , Alendronato/farmacología , Ratas Sprague-Dawley , Rótula/diagnóstico por imagen , Microtomografía por Rayos X , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/metabolismo , Cartílago Articular/metabolismo , Resorción Ósea/tratamiento farmacológico , Modelos Animales de Enfermedad , Estrógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...